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Abstract

Fuzzy logic has emerged as a powerful tool in the medical domain, offering
effective solutions for complex diagnostic tasks. It has been widely used in
detecting critical conditions such as breast cancer, lung cancer, prostate cancer, and
heart disease. This study presents an unsupervised classification model for early
prediction of heart attacks using the Fuzzy C-Means (FCM) algorithm. The system
analyzes patient medical records, utilizing 13 key attributes as input to assess heart
attack risk. A dataset comprising 297 patient records was used to evaluate the
model’s performance, resulting in a classification accuracy of 100%. When
compared to traditional neural network models like back propagation and adaptive
linear networks, the FCM-based approach demonstrated superior efficiency and
cost-effectiveness. The model was developed using MATLAB’s Fuzzy Logic
Toolbox and aims to support physicians in making more accurate and timely
diagnoses of heart-related conditions.
Keywords: Fuzzy C means (FCM), Heart Attack Prediction, Unsupervised
Classification, Medical Data Mining, And Neutral Network Comparison.
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I. INTRODUCTION

Cardiovascular disease (CVD) is a leading global health concern, responsible
for millions of deaths each year. According to estimates by the World Health
Organization, approximately 12 million people die annually due to various forms of
cardiovascular conditions. One of the most common causes is the gradual
narrowing or obstruction of the coronary arteries, which supply blood to the heart
muscle. This condition, known as coronary artery disease, can lead to heart attacks
if not identified and treated promptly. A significant challenge in managing heart
attacks is that around 30% of patients may not experience any noticeable
symptoms, making timely diagnosis more complex. However, biochemical markers
that indicate a heart attack remain in the bloodstream for several days and can
assist in post-event analysis. Accurate diagnosis of heart disease is a critical yet
challenging task in clinical practice. It typically requires physicians to assess
numerous medical parameters, interpret diagnostic reports, and draw on their
clinical experience. Given the variation in expertise among healthcare providers
and the complexity of medical data, automated decision support systems are
becoming increasingly important. These systems can help reduce diagnostic errors,
improve patient outcomes, and provide consistent and cost-effective healthcare
solutions.
Artificial Intelligence (Al), particularly fuzzy logic, has shown promising
applications in the medical field. Fuzzy logic is capable of dealing with
uncertainties and vague data, which are common in medical diagnosis. Unlike
traditional binary logic, which handles only two states (true or false), fuzzy logic
allows reasoning across a range of values between 0 and 1, closely resembling
human thought processes.
Originally conceptualized by Jan Lukasiewicz in the 1930s and later developed into
a comprehensive mathematical theory by Lotfi A. Zadeh in 1965, fuzzy logic
provides a way to model imprecise reasoning. It uses "degrees of membership"
rather than fixed classifications, making it suitable for analyzing complex systems
like human health conditions. As such, fuzzy logic has been successfully applied in
diagnosing several diseases, including breast cancer, lung cancer, and heart
disorders.
This research focuses on the use of the Fuzzy C-Means (FCM) clustering
algorithm, an unsupervised learning technique, to classify and predict heart attack
risks. FCM assigns a degree of membership to each data point in multiple clusters,
offering flexibility in handling overlapping or uncertain data. In this study, 13
clinical attributes from patient records are analyzed using FCM to assess the
likelihood of heart disease. The system is developed using MATLAB’s Fuzzy Logic
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Toolbox, which supports both graphical and command-line operations for
tuzzification, inference, and defuzzification processes.

By incorporating fuzzy logic into the diagnostic process, the proposed system aims
to enhance the accuracy and reliability of early heart attack detection. This tool can
serve as a supportive aid for healthcare professionals, especially in settings where
experienced specialists are limited, thereby contributing to better patient care and

resource optimization.

Related Works

Several research efforts have explored the use of intelligent systems for the
diagnosis of heart disease. Data mining techniques such as decision trees, Naive
Bayes, and neural networks have been used to predict heart conditions based on
medical parameters. For instance, Palaniappan et al. developed a web-based heart
disease prediction system that is user-friendly and scalable, effectively identifying
patterns associated with cardiac risk.
Tsipouras et al. introduced a fuzzy rule-based decision support system for
diagnosing coronary artery disease, optimizing the model parameters through a
four-stage methodology involving decision trees and fuzzy logic. Similatly,
Setiawan et al. designed a fuzzy system using rough set theory to extract and weigh
rules based on medical data.
Clustering techniques have also been widely applied. Shanthakumar et al. employed
K-means to identify relevant patterns, while Dan Li et al. enhanced Fuzzy C-Means
(FCM) to handle incomplete data using nearest-neighbor intervals. These
approaches effectively manage uncertainty and missing values in medical datasets.
Bayesian networks and neural networks have also gained traction for modeling
uncertainty in diagnosis. Yan et al. utilized a multilayer perceptron with over 90%
accuracy in predicting multiple heart diseases, and Avci and Turkoglu applied PCA
and ANVFIS for heart valve diagnosis.
More recent work by Yang et al. introduced adaptive FCM algorithms for datasets
with mixed symbolic and fuzzy attributes, showing improved clustering
performance. These studies emphasize the growing role of unsupervised and semi-
supervised learning methods in medical diagnosis, especially when labeled data is

scarce.
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Proposed System

Fuzzy C Means: Fuzzy clustering is a class of algorithms for cluster analysis in
which the allocation of data points to clusters is not "hard" (all-or-nothing) but
"fuzzy" in the same sense as fuzzy logic.

e Explanation of clustering

e TFuzzy c-means clustering

Explanation of clustering

Data clustering is the process of dividing data elements into classes or
clusters so that items in the same class are as similar as possible, and items in
different classes are as dissimilar as possible. Depending on the nature of the data
and the purpose for which clustering is being used, different measures of similarity
may be used to place items into classes, where the similarity measure controls how
the clusters are formed. Some examples of measures that can be used as in
clustering include distance, connectivity, and intensity.

In hard clustering, data is divided into distinct clusters, where each data
element belongs to exactly one cluster. In fuzzy clustering (also referred to as soft
clustering), data elements can belong to more than one cluster, and associated
with each element is a set of membership levels. These indicate the strength of the
association between that data element and a particular cluster. Fuzzy clustering is a
process of assigning these membership levels, and then using them to assign data
elements to one or more clusters. One of the most widely used fuzzy clustering
algorithms is the Fuzzy C-Means (FCM) Algorithm (Bezdek 1981).

The FCM algorithm attempts to partition a finite collection of n

X

to some given criterion.

elements = {1:1." = Iﬂ-} into a collection of ¢ fuzzy clusters with respect

Given a finite set of data, the algorithm returns a list of ¢ cluster

C'= {Cl! ey Cﬂ} and a partition
W = ?.Ltgjj = [U, ].], 1= 1; very T2, .?: 1.1 ceny €

clement wy tells the degree to which element x; belongs to cluster ¢;. Like the k-

centres

mattix where each

means algorithm, the FCM aims to minimize an objective function. The standard
function is:

wi(z) =
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which differs from the k-means objective function by the addition of the
membership values u; and the fuzzifier m. The fuzzifier m determines the level of
cluster fuzziness. A large m results in smaller memberships wj and hence, fuzzier
clusters. In the limit m = 1, the memberships wjj converge to 0 or 1, which implies
a crisp partitioning. In the absence of experimentation or domain knowledge, m is
commonly set to 2. The basic FCM Algorithm, given n data points (x1, . . ., xn) to
be clustered, a number of ¢ clusters with (c1, . . ., cc) the center of the clusters, and
m the level of cluster fuzziness with.

Fuzzy c-means clustering

In fuzzy clustering, every point has a degree of belonging to clusters, as
in fuzzy logic, rather than belonging completely too just one cluster. Thus, points
on the edge of a cluster may be in the cluster to a lesser degree than points in the
center of cluster. An overview and comparison of different fuzzy clustering
algorithms is available. Any point x has a set of coefficients giving the degree of
being in the kth cluster wi(x).With fuzzy c-means, the centroid of a cluster is the
mean of all points, weighted by their degree of belonging to the cluster:

_ Zow(a)"x
EI w,:;t::t)m .

The degree of belonging, wi(x), is related inversely to the distance

Cr;

from x to the cluster center as calculated on the previous pass. It also depends on a
parameter m that controls how much weight is given to the closest center.

The fuzzy c-means algorithm is very similar to the k-means algotithm

° Choose a number of clusters.

e  Assign randomly to each point coefficients for being in the clusters.

e  Repeat until the algorithm has converged (that is, the coefficients' change
between two iterations is no more than £, the given sensitivity threshold) :

] Compute the centroid for each cluster, using the formula above.

] For each point, compute its coefficients of being in the clusters, using the
formula above.

The algorithm minimizes intra-cluster variance as well, but has the same
problems as k- means; the minimum is a local minimum, and the results depend on
the initial choice of weights. Using a mixture of Gaussians along with
the expectation-maximization algorithm is a more statistically formalized method

which includes some of these ideas: partial membership in classes.
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Table 3.1-Sample Input attributes values for the dataset used for the
prediction system

% | Attribute Name Attihute Descipton Attibute Vaboes

| [AGE Agemnyers 173y

1| Mile Feale valte |; Male vahue ) : Femule

} | CHESTPAN Chest P Type value | typicl type | amgm
value 2:typncal fype angima, value
5 non-ang
pal; vlte & asymptoma;

| | RESTRY resting blood presre 0.0

. | CHOLESTEROL seu cholestoral i g 160410

0. | BLOODSUGAR

fstng blood sugar > 120 mg/d

valte | * 120 mg/d: vahie
N ngd

1| EG

resting lecocardiogmapue el

vale

mormal valee | 1 baving ST-T
wave dnormaly,

vie 1 showmg probable o
defm ef

venmelarbypertophy
§ | VARHEARTRATE | moommm beart rte sceved 11-10]
9| ANGIVA eperelse duced anpma value | ye; valne
I
10. | OLDPEAK ST depresson mauced by eseree | Contimons
Tl fo e
I1. | STSLOPE the slope of the pesk exerese ST | vaue 1: vosloping vaue 2 B,
secment valie
downoping)
12, | VESSELS e of majr vessels ()-3) colored | vale (-3
by domsapy
13, | THAL talc vite 3 normal, value 6 fned

defect: valne
reversibl defect
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Flow Chart
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Fig 1: Flow diagram of FCM

displays that do not demand a backlight, making them thinner and more efficient
than Display screens (which do require a white backlight).
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Methodology
Performance Evaluation

The performance of FCM is evaluated by statistical measures like
sensitivity, specificity and accuracy to illustrate the medical diagnostic test. These
metrics also enumerate how the test was good and consistent.

The sensitivity of a clinical test refers to the ability of the test to correctly
identify those patients with the disease. SENSITIVITY=TP/TP+FN (6))

Whete TP is True Positive i.c. the patient has the disease and the test is
positive and FN is false negative i.c. the patient has the disease but the test is
negative. A high sensitivity is clearly important where the test is used to identify a
serious but treatable disease.

The specificity of a clinical test refers to the ability of the test to correctly
identify those patients without the disease.

SPECIFICITY=TN /TN+FP @)

Whete TN true negative i.c. is the patient does not have the disease and
the test is negative, FP is false positive i.c. the patient does not have the disease
but the test is positive. Therefore, a test with 100% specificity correctly identifies
all patients without the disease. A test with 80% specificity correctly reports 80%
of patients without the disease as test negative (true negatives) but 20% patients
without the disease are incorrectly identified as test positive (false positives).

Accuracy measures correctly figured out the diagnostic test by eliminating
a given condition and it is defined as

TN+TP
ACCURACY = 3)
TN+TP+FN+FP
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Table 4.1.1: Sample Data Given for Testing
AGE | SEX | CHEST | RES | CHOLES |BLOO |EC | MAX | ANGI|OLDP | ST | VESS | TH

PAIV |TBP |TEROL |DSUG |G |EEART |NA |EAK |SOP |ELS |AL

A RATE £

60 110 140 |50 6000 |20 B0 4 20 20| T0
o101 [1)20‘ B0 (00 207180 |00 {19 {00 |0
0 |4 [1)12‘ 1 1 P £ 1
#0100 110 [1)50‘ S I A U VO
5010 |40 [1)26‘ DA I I O A O W
3000 140 [1)80‘ S 1 VI VI B A
40714 [1)30‘ L W W Y
40 |10 4 [l)lﬂ‘ 8 O A 1 U
B0 10 |10 [1)45‘ B0 (200 [0 25 3 (00 |60
MO0 |30 [1)35‘ B O T I I A
407010 226 60|00 00 180 (00 |00 10 20 |30
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Data Set Taken
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The above snap shot, shows the sample data taken with a total of 297 patients. The
data is viewed through a notepad file. The datasets with 14 attributes taken as a
class 0 or class 1. Class 1 represents the abnormal cases and 0 represents the
normal cases.
Assumption:

The total patients taken as samples for input are 297, out of which 162 are
abnormal patients and 135 are normal patients.
Proposed Work:

The above specified samples are given as input to the BPN, ADALINE
and FCM classifiers to the results are tabulated below.

In this thesis FCM classifier results are compared with the other classifier
results namely BPN and ADALINE in terms sensitivity, specificity and accuracy
using the equation 1, 2 and 3 and the results are tabulated below
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Table 4.1.2 Performance of different classifier

INPUT( NUMBER OF
THE PATIENTS )

OUTPUT(NUMBER
THE PATIENTS)

OF

Classifier]

Categories
of  the

patient

No of

Patients

Detected

abnormal

as

Detected as

normal

Sensitivity

(%)

Specificity
(%)

Accuracy
(%)

BPN

Abnormal

162

145

17

Normal

135

10

125

805%

92.5%

90.9%

ADALINE

Abnormal

162

142

20

Normal

135

15

120

87.6%

88.8%

88.2%

FCM

Abnormal

162

162

Normal

135

132

100%

100%

100%

4.2 Graphical Comparison

Figure 1
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Figure 4.2.1 Sensitivity comparison for BPN, ADALINE and FCM

The above graph shows Sensitivity percentage for BPN, ADALINE and
FCM. From the bar chart it is evident that FCM has the highest percentage (%) of
sensitivity when compared with BPN and ADALINE.
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Figure 4.2.2 Specificity comparison for BPN, ADALINE and FCM

The above graph shows Specificity percentage for BPN, ADALINE and
FCM, from the bar chart it is evident that FCM has the highest percentage (%) of
specificity when compared with BPN and ADALINE.
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Figure 4.2.3 Accuracy comparison for BPN, ADALINE and FCM

Mayas Publication 37



Emperor Journal of Applied Scientific Research

The above graph shows accuracy percentage for BPN, ADALINE and
FCM, from the bar chart it is evident that FCM has the highest percentage (%) of
accuracy when compared with BPN and ADALINE.

Discussion

From the Table 4.1.2 it is evident that FCM clustering algorithm process
to be 100% efficient in terms of sensitivity, specificity and accuracy when
compared with BPN and ADALINE. In the classification stage 13 attributes are
given as input to the Fuzzy C Means (FCM) classifier to determine the risk of heart
attack. The efficiency of the classifier is tested using the records collected from 297
patients, which gives a classification accuracy of 100%. The proposed system is
implemented using the features of fuzzy logic toolbox in matlab.

II. CONCLUSION

Thus the proposed work, FCM, ADALINE and BPN classifier are implemented
297 samples and the taken as input to the results were calculated table 5.2.Each
person had got 13 sets of data with the last data as a label. Only in case of
ADALINE, target will be supplied along with data sets. But in other cases the
target will be given separately into the algorithm. Fuzzy C means based clustering
outperformed and has accuracy increased and reached 100% at even randomized
new data sets. Hence FCM saves time in training as well as testing. The FCM
performs better and hence this work could be highly useful the various
applications. When compared the fuzzy ¢ means, process to more efficient and
cost effective rather than the back propagation and adaptive linear network. The
proposed system is implemented using the features of fuzzy logic toolbox in
matlab. The proposed system will provide an aid for the physicians to diagnosis the
disease in a more efficient way.

Future Enhancement

Future research could focus on expanding the dataset size and diversity to further
validate the robustness of the FCM-based approach. Integration with real-time
clinical data and exploration of hybrid models combining fuzzy logic with other
machine learning techniques may improve diagnostic accuracy and reliability.
Additionally, enhancing the system’s user interface and integrating it with hospital
management systems could increase its practical applicability in healthcare settings.
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