Skip to main content


Computer Vision and Image Processing

Issue Abstract

Abstract 

There are numerous in studying computer vision. The process goes beyond the crowded data recording and techno Ms, combining digital image recognition and automatic learning. Many researchers are part of different disciplines and fields for widespread use. This item features a current technology summary and tortuous concept that highlight the evolution of computer vision. Image processing is particularly related to the use of different areas of its application in this area. Using computer vision helps the researchers and videos. They can use the information received to event or descriptions and create panoramic models. A method has been used that includes many application areas and requires a high analysis. This item is added to the latest reviews in computer vision, image and related. The current of the predominant computer vision has been divided into four groups: image processing, object and automatic learning. Moreover, we provide a brief description of the latest information about their techniques and performance. Keywords: Segmentation, Compression, Image Enhancement, Sharpening.


Author Information
--------
Issue No
1
Volume No
1
Issue Publish Date
04 Apr 2025
Issue Pages
16-22

Issue References

References

[1] Patel, Krishna Kumar, A. Kar, S. N. Jha, and M. A. Khan. "Machine vision system: a tool for quality inspection of food and agricultural products." Journal of food science and technology 49, no. 2 (2012): 123-141.doi: 10.1007/s13197-011-0321-4 

[2]Cosio, Oscar, Andres Iglesias, Akemi Galvez, Raffaele Catuogno, Massimiliano Campi, Leticia Terán, and Esteban Sainz. "Hybridization of Convergent Photogrammetry, Computer Vision, and Artificial Intelligence for Digital Documentation of Cultural Heritage-A Case Study: The Magdalena Palace." In Cyberworlds (CW), 2014 International Conference on, pp. 369-376. IEEE, 2014. DOI: 10.1109/CW.2014.58 

[3] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440. 2015. DOI: 10.1109/CVPR.2015.7298965 

[4] Babatunde, Hezekiah, Leisa Armstrong, Jin song Leng, and Dean. "A survey of computer-based vision systems for automatic identification of plant species." Journal of Agricultural Informatics 6, no. 1 (2015): 61-71. doi:10.17700/jai.2015.6.1.152 

[5] Patel, Krishna Kumar, A. Kar, S. N. Jha,     and M. A. Khan. "Machine vision system: a tool for quality inspection of food and agricultural .

[6] Raut, Siddharth S., and Anupam Agrawal. "Vision-based hand gesture recognition for human-computer interaction: a survey." Artificial Intelligence Review 43, no. 1 (2015): 1-54. Doi: 10.1007/s10462-012-9356-9 

[9] Sigdel M, I, Sigdel MS, S, Pusey ML, Aygun RS. Feature analysis for classification of trace fluorescent label protein crystallization images. Bio Data Mining.2017;10:14. doi:10.1186/s13040-017-0133-9. 

[10] Kehoe, Ben, Sachin Patil, Pieter Abbee, and Ken Goldberg. "A survey of research on cloud robotics and automation." IEEE Transactions on automation science and engineering 12, no. 2 (2015): 398-409. DOI: 10.1109/TASE.2014.2376492 

[11] Guo M, Li J, Sheng C, Xu J, Wu L. A      Review of Wetland Remote Sensing. Passaro .VMN, ed. Sensors (Basel, Switzerland). 2017;17(4):777. doi:10.3390/s17040777. 

[12] Breen G-M, Matz J. An Evolutionary Examination of Telemedicine: A Health and Computer-Mediated Communication Perspective. Social work in public health. 2010;25(1):59-71. doi:10.1080/19371910902911206. 

[13] Matiah S, Celis D, Silva P,  J, Osorio F. Quality Parameters of Six Cultivars of Blueberry Using Computer Vision. International Journal of Food Science. 2013;2013:419535. doi:10.1155/2013/419535. 

[14] Mery, Domingo, Franco Ped, and Alvaro Soto. "Automated design of a computer vision system for visual food quality evaluation." Food and Bioprocess Technology 6, no. 8 (2013): 2093-2108. DOI 10.1007/s11947-012-0934-2 

[15] Savi, Lauri, Akio Ando, Ramani Durai swami, Emanuel AP Habets, and Sascha Spors. "Introduction to the issue on spatial audio." IEEE Journal of Selected Topics in Signal Processing 9, no. 5 (2015): 767-769. DOI: 10.1109/JSTSP.2015.2447112 

[16] Zai AT, Bhargava S, Mega rani N, Liu S-C. Reconstruction of audio waveforms from spike trains of artificial cochlea models. Frontiers in Neuroscience.2015;9:347.doi:10.3389/fnins.2015.00347. 

[17] Liew OW, Chong PCJ, Li B, Asun di AK. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health. Sensors (Basel, Switzerland). 2008;8(5):3205-3239. doi:10.3390/s8053205. 

[18] A, Farooq M, Yang X, et al. Meal Microstructure Characterization from Sensor-Based Food Intake Detection. Frontiers in Nutrition.2017;4:31.doi:10.3389/fnut.2017.00031. 

[19]Jackman ,P. ,Sun,D.W .,Du,C.J.,Al and Downey, G. Prediction of beef eating quality from colour, marbling and wavelet texture features. Meat Science,80.4(2008):1273-81.doi: 10.1016/j.meatsci.2008.06.001 

[20] Wu H, Zhou Y, Luo Q, Basset MA. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm. Computational Intelligence and Neuroscience.

[21] Wu H, Zhou Y, Luo Q, Basset MA. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm. Computational Intelligence and Neuroscience. 2016;2016:9063065. doi:10.1155/2016/9063065. 

[21] Du and Sun, D.W. Multi-classification of pizza using computer vision and support vector machine. Journal of Food Engineering.86.2(2008):234-42. doi:10.1016/j.jfoodeng.2004.03.011 

[22],Y.M.M., Chin,. and Rahman, R.A. Bread crust thickness measurement using digital image and L*a*b*colour system .Journal of Food Engginering,94.3-4(2009):366-71. DOI : 10.1016/j.jfoodeng.2009.04.002 

[23] Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies. Giga Science. 2017;6(10):1-7.doi:10.1093/giga science/gix084.